Issue 11, 2015

Save energy on OLED lighting by a simple yet powerful technique

Abstract

Due to the very low light extraction efficiency of conventional organic light-emitting diodes (OLEDs), the application of OLEDs for next-generation lighting remains limited. Therefore, in order to enhance the light extraction efficiencies that result in improving the luminous efficacy (LE, lm W−1) and external quantum efficiency (ηEQE, %) of OLEDs, three different geometrically profiled, negatively nanostructured periodic semi-pyramid polydimethylsiloxane (PDMS) layers are used to create a hole at depths of 500 nm, 650 nm, and 1000 nm; these are designated as the polymeric lighting extraction film (PLEF) I, PLEF II, and PLEF III, respectively. These layers are placed directly on the backside of the green emissive bottom-emitting OLED (BE-OLED) glass substrates as an outcoupling enhancement PLEF that improves the glass substrate/air interface. Through the simple combination with three different nanostructures on each green emissive BE-OLED, a maximum enhancement of up to 50% is achieved in the LE and ηEQE measured at the same brightness, which is 1.5 times higher than the reference green emissive BE-OLED without a PLEF. Therefore, global energy saving can be achieved through reducing the power consumption by up to 30% possibly estimated from LE using the integrated PLEFs.

Graphical abstract: Save energy on OLED lighting by a simple yet powerful technique

Article information

Article type
Paper
Submitted
15 Sep 2014
Accepted
10 Dec 2014
First published
12 Dec 2014

RSC Adv., 2015,5, 8415-8421

Author version available

Save energy on OLED lighting by a simple yet powerful technique

J. Y. Kim, C. W. Joo, J. Lee, J. Woo, J. Oh, N. S. Baek, H. Y. Chu and J. Lee, RSC Adv., 2015, 5, 8415 DOI: 10.1039/C4RA10434J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements