Issue 4, 2015

Antibacterial properties and mechanisms of toxicity of sonochemically grown ZnO nanorods

Abstract

In this study, we present a simple, fast and cost-effective sonochemical growth method for the synthesis of zinc oxide (ZnO) nanorods. ZnO nanorods were grown on glass substrates at room temperature without the addition of surfactants. The successful coating of substrates with ZnO nanorods was demonstrated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). The antimicrobial properties of ZnO nanorods against the planktonic Bacillus subtilis and Escherichia coli and their respective biofilms were investigated. The cytotoxicity of ZnO nanorods were evaluated using the NIH 3T3 mammalian fibroblast cell line. Moreover, to understand the possible mechanisms of ZnO nanorod toxicity, glutathione oxidation, superoxide production, and release of Zn2+ ions by the ZnO nanorods were determined, and the LIVE/DEAD assay was employed to investigate cell membrane damage. The results showed that sonochemically grown ZnO nanorods exhibited significant antimicrobial effects to both bacteria and prevented biofilm formation. ZnO nanorods did not present any significant toxicity to fibroblast cells. The main anti-microbial mechanisms of ZnO nanorods were determined to be H2O2 production and cell membrane disruption.

Graphical abstract: Antibacterial properties and mechanisms of toxicity of sonochemically grown ZnO nanorods

Supplementary files

Article information

Article type
Paper
Submitted
16 Oct 2014
Accepted
02 Dec 2014
First published
02 Dec 2014

RSC Adv., 2015,5, 2568-2575

Author version available

Antibacterial properties and mechanisms of toxicity of sonochemically grown ZnO nanorods

T. O. Okyay, R. K. Bala, H. N. Nguyen, R. Atalay, Y. Bayam and D. F. Rodrigues, RSC Adv., 2015, 5, 2568 DOI: 10.1039/C4RA12539H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements