Issue 110, 2014

Investigating the thermoelectric properties of p-type half-Heusler Hfx(ZrTi)1−xCoSb0.8Sn0.2 by reducing Hf concentration for power generation

Abstract

Based on the fact that Hf is much more expensive than other commonly used elements in HfCoSb-based half-Heusler materials, we studied the thermoelectric properties of the p-type half-Heusler Hfx(ZrTi)1−xCoSb0.8Sn0.2 by reducing Hf concentration. A peak ZT of ∼1.0 was achieved at 700 °C with the composition of Hf0.19Zr0.76Ti0.05CoSb0.8Sn0.2 by keeping the Hf/Zr ratio at 1/4 and Hf/Ti at 4/1. This composition has much reduced cost and similar thermoelectric performance compared with our previously reported best p-type half-Heusler: Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2. Due to the decreased usage of Hf, it is more favorable for consideration in applications. In addition, a higher output power is expected because of the higher power factor even though the conversion efficiency is the same due to the same ZT.

Graphical abstract: Investigating the thermoelectric properties of p-type half-Heusler Hfx(ZrTi)1−xCoSb0.8Sn0.2 by reducing Hf concentration for power generation

Article information

Article type
Communication
Submitted
21 Oct 2014
Accepted
21 Nov 2014
First published
21 Nov 2014

RSC Adv., 2014,4, 64711-64716

Author version available

Investigating the thermoelectric properties of p-type half-Heusler Hfx(ZrTi)1−xCoSb0.8Sn0.2 by reducing Hf concentration for power generation

R. He, H. S. Kim, Y. Lan, D. Wang, S. Chen and Z. Ren, RSC Adv., 2014, 4, 64711 DOI: 10.1039/C4RA14343D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements