Issue 14, 2015

A simple route to CoFe2O4 nanoparticles with shape and size control and their tunable peroxidase-like activity

Abstract

Recent studies have suggested that the physical and chemical properties of nanoparticles (NPs) strongly depend on local chemical composition, size, and shape. Here, we report a new precursor-mediated growth of monodisperse magnetic cobalt ferrite (CoFe2O4) NPs with controlled size and shape. CoFe2O4 NPs with near corner-grown cubic, near cubic and polyhedron shape can be successfully prepared by simply tuning the amount of iron and cobalt acetylacetonates in oleic acid. Interestingly, the product shape varies from near corner-grown cubic to starlike by only changing the reaction temperature from 320 °C to 330 °C. These CoFe2O4 NPs exhibit size and shape-dependent peroxidase-like activity towards 3,3′,5,5′-tetramethylbenzdine (TMB) in the presence of H2O2, and thus exhibited different levels of peroxidase-like activities, in the order of spherical > near corner-grown cubic > starlike > near cubic > polyhedron; this order was closely related to their particle size and crystal morphology. CoFe2O4NPs exhibited high stability in HAc–NaAc buffer (pH = 4.0) and high activity over a broad pH (2.5–6.0). Furthermore, the Michaelis constants Km value for the CoFe2O4 NPs (0.006 mM) with TMB as the substrate was lower than HRP (0.062 mM) and Fe3O4 NPs (0.010 mM). After further surface functionalization with folic acid (FA), the folate-conjugated CoFe2O4 nanoparticles allow discrimination of HeLa cells (folate receptor overexpression) from NIH-3T3 cells (without folate receptor expression). Such investigation is of great significance for peroxidase nanomimetics with enhanced activity and utilization.

Graphical abstract: A simple route to CoFe2O4 nanoparticles with shape and size control and their tunable peroxidase-like activity

Supplementary files

Article information

Article type
Paper
Submitted
20 Dec 2014
Accepted
05 Jan 2015
First published
06 Jan 2015

RSC Adv., 2015,5, 10632-10640

A simple route to CoFe2O4 nanoparticles with shape and size control and their tunable peroxidase-like activity

K. Zhang, W. Zuo, Z. Wang, J. Liu, T. Li, B. Wang and Z. Yang, RSC Adv., 2015, 5, 10632 DOI: 10.1039/C4RA15675G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements