Issue 24, 2015

Cellulose nanofibrils: a rapid adsorbent for the removal of methylene blue

Abstract

Cellulose nanofibrils (CNF) were prepared from kenaf core (KC) using acidified-chlorite bleaching method and followed by disintegration using a high speed blender. The effects of disintegration time and acid treatment on the defibrillation of holocellulose were studied. Hemicellulose was found to facilitate defibrillation, as CNF without any acid treatment was fully defibrillated after 30 min. The adsorption kinetics of CNF toward cationic dye cannot be accurately determined due to its quick adsorption performance, in which the equilibrium is achieved immediately after 1 min of contact time. The effects of acid treatment on holocellulose, pH, adsorbent dosage, temperature and dye concentration were studied and optimized. Adsorption data were fitted to both Langmuir and Freundlich models where the Langmuir model was found to be the better model to describe the adsorption process. The maximum adsorption capacity was found to be 122.2 mg g−1 at pH 9, 20 °C for the non-acid treated CNF. The CNF can be regenerated by desorption at low pH where as much as 70% of the dye adsorbed can be desorbed after 6 cycles of adsorption–desorption.

Graphical abstract: Cellulose nanofibrils: a rapid adsorbent for the removal of methylene blue

Supplementary files

Article information

Article type
Paper
Submitted
04 Dec 2014
Accepted
03 Feb 2015
First published
03 Feb 2015

RSC Adv., 2015,5, 18204-18212

Author version available

Cellulose nanofibrils: a rapid adsorbent for the removal of methylene blue

C. H. Chan, C. H. Chia, S. Zakaria, M. S. Sajab and S. X. Chin, RSC Adv., 2015, 5, 18204 DOI: 10.1039/C4RA15754K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements