Issue 23, 2014

Behaviour of whey protein emulsion gel during oral and gastric digestion: effect of droplet size

Abstract

A set of whey protein stabilized-emulsion gels with different droplet size distributions (D4,3 = ∼1, 6 and 12 μm) was produced, and the mechanical properties of the gels in the linear viscoelastic region and at large deformation were measured, along with the physicochemical and structural changes of the gels during oral mastication and gastric digestion. The gels containing 1 μm oil droplets had an aggregated particle structure with proteins coating at oil droplets whereas the gels containing 12 μm oil droplets had a particle-filled structure with spatially continuous matrix. During oral processing, the release of oil droplets from the gels increased as the droplet size increased, with coalescence being seen in gels containing oil droplets of 6 and 12 μm diameter. Under gastric digestion, high degrees of coalescence and phase separation of oil droplets occurred in the gels containing 6 and 12 μm oil droplets because of oil droplet release from the gel matrix; this led to slow gastric emptying. The gels were finally broken down into peptide aggregates and oil droplets (or free oil). The gels, containing 1 μm oil droplets disintegrated into various particles of several to several tens of microns with a low degree of oil droplet release and coalescence. Protein breakdown was slower in these gels, suggesting that the protein structures of the gel matrices were affected by the sizes of the incorporated oil droplets.

Graphical abstract: Behaviour of whey protein emulsion gel during oral and gastric digestion: effect of droplet size

Article information

Article type
Paper
Submitted
19 Mar 2014
Accepted
10 Apr 2014
First published
14 Apr 2014

Soft Matter, 2014,10, 4173-4183

Behaviour of whey protein emulsion gel during oral and gastric digestion: effect of droplet size

Q. Guo, A. Ye, M. Lad, D. Dalgleish and H. Singh, Soft Matter, 2014, 10, 4173 DOI: 10.1039/C4SM00598H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements