Issue 19, 2014

Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation

Abstract

Hydrogen-treated hematite nanostructures were prepared by a simple pyrolysis of NaBH4 in a crucible. The H2-treated hematite photoelectrode showed high efficiency for solar water oxidation with a photocurrent of 2.28 mA cm−2 at 1.23 V vs. RHE, which was over 2.5 times higher than that for pristine hematite (0.88 mA cm−2). The significant improvement of the photocurrent can be attributed to increased oxygen vacancies after the H2 treatment. Moreover, the onset potential for H2-treated hematite was low and when compared to the hematite photoelectrode treated in an oxygen-deficient atmosphere to produce oxygen vacancies, a cathodic shift of the onset potential was observed by about 120 mV (from 0.99 to 0.87 V vs. RHE). The cathodic shift of the onset potential was attributed to the surface effect of H2 treatment while the oxygen-deficiency treatment mainly affected the bulk, which was confirmed by X-ray absorption spectroscopy. The results also suggest that the presence of surface defect states of Fe2+ in hematite is not the reason for high onset potential described in the literature. The H2-treated hematite with high efficiency could be used as a good starting material to achieve better performance for practical applications with further modifications such as surface catalysts or elemental doping.

Graphical abstract: Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation

Supplementary files

Article information

Article type
Paper
Submitted
11 Feb 2014
Accepted
06 Mar 2014
First published
07 Mar 2014

J. Mater. Chem. A, 2014,2, 6727-6733

Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation

M. Li, J. Deng, A. Pu, P. Zhang, H. Zhang, J. Gao, Y. Hao, J. Zhong and X. Sun, J. Mater. Chem. A, 2014, 2, 6727 DOI: 10.1039/C4TA00729H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements