Issue 26, 2014

Highly selective and efficient heavy metal capture with polysulfide intercalated layered double hydroxides

Abstract

Polysulfide [Sx]2− (x = 2, 4) species were intercalated into magnesium–aluminium layered double hydroxide (MgAl–LDH) by a [Sx]2−/NO3 anion-exchange reaction. The resulting Sx–LDH materials exhibit excellent affinity and selectivity for heavy metal ions such as Cu2+, Ag+ and Hg2+. For the highly toxic Hg2+, the distribution coefficient Kd values can reach ∼107 mL g−1. The Sx–LDH materials rapidly reduce the concentrations of Hg2+ and Ag+ ions in testing solutions from ppm levels to trace levels of ≤1 ppb. A larger series of metal ions were investigated and the selectivity order of Ni2+, Co2+ ≪ Zn2+, Pb2+ < Cd2+ < Cu2+, Ag+, Hg2+ was observed. The Sx–LDH materials show higher selectivity for Cu2+/Zn2 compared to Co2+/Ni2+, providing good separation for these transition metal ions. After ion capture, the LDH hybrid materials retained the original hexagonal prismatic shape and showed good stability under acidic conditions (pH ∼ 3). The adsorption process of the metals occurs via M–S bonding. The enhanced environmental stability of the [Sx]2− groups provided by the LDH protective space, the confinement effect offered by the LDH layers, along with the easy accessibility of polysulfide ions to metal ions enable high capture ability and excellent selectivity. The Sx–LDH materials are thus promising as superior sorbents for the decontamination of polluted water.

Graphical abstract: Highly selective and efficient heavy metal capture with polysulfide intercalated layered double hydroxides

Supplementary files

Article information

Article type
Paper
Submitted
11 Mar 2014
Accepted
14 Apr 2014
First published
15 Apr 2014

J. Mater. Chem. A, 2014,2, 10280-10289

Author version available

Highly selective and efficient heavy metal capture with polysulfide intercalated layered double hydroxides

S. Ma, Q. Chen, H. Li, P. Wang, S. M. Islam, Q. Gu, X. Yang and M. G. Kanatzidis, J. Mater. Chem. A, 2014, 2, 10280 DOI: 10.1039/C4TA01203H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements