Issue 33, 2014

Tetragonal vs. cubic phase stability in Al – free Ta doped Li7La3Zr2O12 (LLZO)

Abstract

Li7La3Zr2O12 (LLZO) garnet is attracting interest as a promising Li-ion solid electrolyte. LLZO exists in a tetragonal and cubic polymorph where the cubic phase exhibits ∼2 orders of magnitude higher Li-ion conduction. It has been suggested that a critical Li vacancy concentration (0.4–0.5 atoms per formula unit) is required to stabilize the cubic polymorph of Li7La3Zr2O12. This has been confirmed experimentally for Al3+ doping on the Li+ site. Substitution of M5+ (M = Ta, Nb) for Zr4+ is an alternative means to create Li vacancies and should have the same critical Li vacancy concentration, nevertheless, subcritically doped compositions (0.25 moles of Li vacancies per formula unit) have been reported as cubic. Adventitious Al, from alumina crucibles, was likely present in these studies that could have acted as a second dopant to introduce vacancies. In this work, Al-free subcritically doped (Li6.75La3Zr1.75Ta0.25O12) and critically doped (Li6.5La3Zr1.5Ta0.5O12) compositions are investigated. X-ray diffraction indicates that both compositions are cubic. However, upon further materials characterization, including SEM analysis, Raman spectroscopy, Electrochemical Impedance Spectroscopy, and neutron diffraction it is evident that the subcritically doped composition is a mixture of cubic and tetragonal phases. The results of this study confirm that 0.4–0.5 Li vacancies per formula unit are required to stabilize the cubic polymorph of LLZO.

Graphical abstract: Tetragonal vs. cubic phase stability in Al – free Ta doped Li7La3Zr2O12 (LLZO)

Supplementary files

Article information

Article type
Paper
Submitted
27 Apr 2014
Accepted
22 Jun 2014
First published
24 Jun 2014

J. Mater. Chem. A, 2014,2, 13431-13436

Author version available

Tetragonal vs. cubic phase stability in Al – free Ta doped Li7La3Zr2O12 (LLZO)

T. Thompson, J. Wolfenstine, J. L. Allen, M. Johannes, A. Huq, I. N. David and J. Sakamoto, J. Mater. Chem. A, 2014, 2, 13431 DOI: 10.1039/C4TA02099E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements