Issue 34, 2014

Graphene oxide nanosheet: an emerging star material for novel separation membranes

Abstract

Advanced membranes that enable ultrafast permeance are very important for processes such as water purification and desalination. Ideally, an efficient ultrafast membrane should be as thin as possible to maximize the permeance, be robust enough to withstand the applied pressure and have a narrow distribution of pore size for excellent selectivity. Graphene oxide nanosheets offer an encouraging opportunity to assemble a brand new class of ultrathin, high-flux and energy-efficient sieving membranes because of their unique two-dimensional and mono-atom thick structure, outstanding mechanical strength and good flexibility as well as their facile and large-scale production in solution. The current state-of-the-art in graphene oxide membranes will be reviewed based on their exceptional separation performance (gas, ions and small molecules). We will focus on the structure of nanochannels within the graphene oxide membranes, the permeance and rejection rate, and the interactions between graphene oxide sheets. The separation performance of graphene oxide membranes can be easily influenced by the state of oxygen-containing groups on the graphene oxide sheets, which provides much more straightforward strategies to tune the pore size of graphene oxide nanochannels when compared to other filtration membranes. We will illustrate in the review theoretical calculations to elucidate the potential of precisely controlling the ionic and small molecular sieving and water transport behaviour through graphene oxide nanochannels. This review will serve as a valuable platform to fully understand how the ions, small molecules and water are transported through the laminar graphene oxide membrane as well as the latest progress in graphene oxide separation membranes.

Graphical abstract: Graphene oxide nanosheet: an emerging star material for novel separation membranes

Article information

Article type
Feature Article
Submitted
10 May 2014
Accepted
13 Jun 2014
First published
13 Jun 2014

J. Mater. Chem. A, 2014,2, 13772-13782

Author version available

Graphene oxide nanosheet: an emerging star material for novel separation membranes

H. Huang, Y. Ying and X. Peng, J. Mater. Chem. A, 2014, 2, 13772 DOI: 10.1039/C4TA02359E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements