Issue 10, 2015

One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber

Abstract

CoFe2O4/graphene oxide hybrids have been successfully fabricated via a facile one-pot polyol route, followed by chemical conversion into FeCo/graphene hybrids under H2/NH3 atmosphere. These magnetic nanocrystals were uniformly decorated on the entire graphene nanosheets without aggregation. The morphology, chemical composition and crystal structure have been characterized in detail. In particular, FeCo/graphene hybrids show significant improvement in both permeability and permittivity due to the combination of the high magnetocrystalline anisotropy of metallic FeCo and high conductivity of light-weight graphene. This leads to remarkable enhancement in microwave absorption properties. The maximum reflection loss of FeCo/graphene hybrids reaches −40.2 dB at 8.9 GHz with a matching thickness of only 2.5 mm, and the absorption bandwidth with reflection loss exceeding −10 dB is in the 3.4–18 GHz range for the absorber thickness of only 1.5–5 mm. Moreover, the experimental relationship between matching thickness and frequency is found to obey the quarter-wavelength matching model, facilitating the design of FeCo/graphene hybrid film for practical application. The results suggest that the FeCo/graphene hybrids developed here can serve as an ideal candidate for the manufacture of light-weight and high-efficiency microwave-absorbing devices.

Graphical abstract: One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber

Supplementary files

Article information

Article type
Paper
Submitted
24 Oct 2014
Accepted
26 Jan 2015
First published
26 Jan 2015

J. Mater. Chem. A, 2015,3, 5535-5546

Author version available

One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber

X. Li, J. Feng, Y. Du, J. Bai, H. Fan, H. Zhang, Y. Peng and F. Li, J. Mater. Chem. A, 2015, 3, 5535 DOI: 10.1039/C4TA05718J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements