Issue 8, 2015

Superhydrophobic CuO nanoneedle-covered copper surfaces for anticorrosion

Abstract

With unique water-repellency and self-cleaning properties, superhydrophobic surfaces promise a great potential of anticorrosion for engineered metals. The current study reports a facile and controllable anodization approach to fabricate superhydrophobic CuO nanoneedle array (NNA) films for the enhancement of corrosion resistance of copper substrates. The anodic CuO NNA films were grown on copper foils by electrochemical anodization in an aqueous KOH solution for different anodization times. The morphological features and crystalline structures of the anodic CuO NNA were characterized by SEM-EDS and XRD. The superhydrophobicity on the hierarchical CuO NNA films was achieved by chemical modification with fluoroalkyl-silane (FAS-17). The presence of low surface energy fluorosilanized carbon (–CFx) groups on the FAS-modified surfaces was ascertained by EDS, XPS and water contact angle analyses. The wetting behaviour of the FAS-modified surfaces was investigated to elucidate the correlation between the static water contact angles, surface roughness, dynamic water contact angle hysteresis, and anodization time. The FAS-modified copper surfaces demonstrated not only the desirable superhydrophobicity with a water contact angle as high as approximately 169° and contact angle hysteresis as low as about 5°, but also substantially improved corrosion resistance in an aqueous NaCl solution (3.5%) with an inhibition efficiency higher than 90%, as revealed by means of Tafel plots and EIS measurements. The stability and durability of the superhydrophobic FAS-modified surfaces were evaluated by observing the change in surface wettability and geometric microstructures as a function of exposure time in an aqueous NaCl solution.

Graphical abstract: Superhydrophobic CuO nanoneedle-covered copper surfaces for anticorrosion

Supplementary files

Article information

Article type
Paper
Submitted
26 Oct 2014
Accepted
05 Jan 2015
First published
06 Jan 2015

J. Mater. Chem. A, 2015,3, 4374-4388

Author version available

Superhydrophobic CuO nanoneedle-covered copper surfaces for anticorrosion

F. Xiao, S. Yuan, B. Liang, G. Li, S. O. Pehkonen and T. Zhang, J. Mater. Chem. A, 2015, 3, 4374 DOI: 10.1039/C4TA05730A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements