Issue 28, 2014

NIR excitation of upconversion nanohybrids containing a surface grafted Bodipy induces oxygen-mediated cancer cell death

Abstract

We report the preparation of water-dispersible, ca. 30 nm-sized nanohybrids containing NaYF4:Er3+, Yb3+ up-conversion nanoparticles (UCNPs), capped with a polyethylene glycol (PEG) derivative and highly loaded with a singlet oxygen photosensitizer, specifically a diiodo-substituted Bodipy (IBDP). The photosensitizer, bearing a carboxylic group, was anchored to the UCNP surface and, at the same time, embedded in the PEG capping; the combined action of the UCNP surface and PEG facilitated the loading for an effective energy transfer and, additionally, avoided photosensitizer leaching from the nanohybrid (UCNP–IBDP@PEG). The effectiveness of the nanohybrids in generating singlet oxygen after near-infrared (NIR) excitation (975 nm) with a continuous wavelength (CW) laser was evidenced by using a probe molecule. In vitro assays demonstrated that the UCNP–IBDP@PEG nanohybrid was taken up by the SH-SY5Y human neuroblastoma-derived cells showing low cytotoxicity. Moreover, ca. 50% cancer cell death was observed after NIR irradiation (45 min, 239 mW).

Graphical abstract: NIR excitation of upconversion nanohybrids containing a surface grafted Bodipy induces oxygen-mediated cancer cell death

Supplementary files

Article information

Article type
Paper
Submitted
28 Feb 2014
Accepted
06 May 2014
First published
12 May 2014

J. Mater. Chem. B, 2014,2, 4554-4563

Author version available

NIR excitation of upconversion nanohybrids containing a surface grafted Bodipy induces oxygen-mediated cancer cell death

M. González-Béjar, M. Liras, L. Francés-Soriano, V. Voliani, V. Herranz-Pérez, M. Duran-Moreno, J. M. Garcia-Verdugo, E. I. Alarcon, J. C. Scaiano and J. Pérez-Prieto, J. Mater. Chem. B, 2014, 2, 4554 DOI: 10.1039/C4TB00340C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements