Issue 34, 2014

Glycopolymer-coated iron oxide nanoparticles: shape-controlled synthesis and cellular uptake

Abstract

Carbohydrates are involved in different cellular recognition events, and glycopolymers with carbohydrate side chains are currently being applied in many fields, with much potential for disease treatment. The aggregation shape has obvious effects on the nanoparticle–cell interaction and is therefore important for the applications of glycopolymers in biological systems. The synthesis of well-defined glyco-nanoparticles, especially non-spherical ones, is challenging work. Herein, iron oxide nanoparticles with different shapes (spindle and cubic-like) were first obtained and used as a core that was coated with dopamine methacrylamide (DMA) via catecholic chemistry for the introduction of vinyl groups. RAFT-synthesized glycopolymers were then conjugated to the DMA-coated iron oxide nanoparticles via a thiol–ene coupling reaction. By combining the convenience of inorganic nanoparticle shape control, biomimic catecholic chemistry, and efficient thiol–ene reaction, glycopolymer-decorated nanoparticles were easily obtained. Glyco-nanoparticles with variable shapes are stable in serum and exhibit shape-dependent cell uptake behaviors as well as enhanced activity toward specific lectins. The fabrication of biologically active non-spherical nanoparticles will be beneficial for both fundamental research on nanoparticle–cell interaction and related applications for disease treatment.

Graphical abstract: Glycopolymer-coated iron oxide nanoparticles: shape-controlled synthesis and cellular uptake

Supplementary files

Article information

Article type
Paper
Submitted
26 May 2014
Accepted
04 Jul 2014
First published
04 Jul 2014

J. Mater. Chem. B, 2014,2, 5569-5575

Author version available

Glycopolymer-coated iron oxide nanoparticles: shape-controlled synthesis and cellular uptake

X. Li, M. Bao, Y. Weng, K. Yang, W. Zhang and G. Chen, J. Mater. Chem. B, 2014, 2, 5569 DOI: 10.1039/C4TB00852A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements