Issue 42, 2014

Dendrimer-functionalized electrospun cellulose acetate nanofibers for targeted cancer cell capture applications

Abstract

Cancer cell metastasis causes 90% of cancer patient death. Detection and targeted capture of cancer cells in vitro are of paramount importance. The development of novel nanodevices for cancer cell capture applications, however, still remains a great challenge. Here we report a facile approach to fabricating multifunctional dendrimer-modified electrospun cellulose acetate (CA) nanofibers for targeted cancer cell capture applications. In this study, hydrolyzed electrospun CA nanofibers with negative surface charge were assembled layer-by-layer with a bilayer of poly(diallyldimethylammonium chloride) (PDADMAC) and polyacrylic acid (PAA) via electrostatic interactions. Thereafter, amine-terminated generation 5 poly(amidoamine) dendrimers pre-modified with folic acid (FA) and fluorescein isothiocyanate were covalently conjugated onto the bilayer-assembled nanofibers via the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride coupling reaction, followed by acetylation to neutralize the remaining dendrimer surface amines. The formation of electrospun CA nanofibers, assembly of the PDADMAC/PAA bilayer onto the CA nanofibers, and the dendrimer modification on the nanofibers were characterized via different techniques. The formed dendrimer-modified CA nanofibers were then used to capture cancer cells overexpressing FA receptors. We show that the bilayer self-assembly and the subsequent dendrimer modification do not appreciably change the fiber morphology. Importantly, the modification of FA-targeted multifunctional dendrimers renders the CA nanofibers with superior capability to specifically capture cancer cells (KB cells, a model cancer cell line) overexpressing high-affinity FA receptors. The approach to modifying electrospun nanofibers with multifunctional dendrimers may be extended to fabricate other functional nanodevices for capturing different types of cancer cells.

Graphical abstract: Dendrimer-functionalized electrospun cellulose acetate nanofibers for targeted cancer cell capture applications

Supplementary files

Article information

Article type
Paper
Submitted
02 Aug 2014
Accepted
03 Sep 2014
First published
04 Sep 2014

J. Mater. Chem. B, 2014,2, 7384-7393

Author version available

Dendrimer-functionalized electrospun cellulose acetate nanofibers for targeted cancer cell capture applications

Y. Zhao, X. Zhu, H. Liu, Y. Luo, S. Wang, M. Shen, M. Zhu and X. Shi, J. Mater. Chem. B, 2014, 2, 7384 DOI: 10.1039/C4TB01278J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements