Issue 8, 2015

Validation of a dendron concept to tune colloidal stability, MRI relaxivity and bioelimination of functional nanoparticles

Abstract

The functionalization of spherical superparamagnetic iron oxide nanoparticles (SPION) of 10 nm with a linear monophosphonate (L1) and also PEGylated mono-phosphonated dendrons of growing generation (D2-G1, -G2 and -G3) yielded dendritic nano-objects of 15 to 30 nm in size, stable in physiological media and showing both renal and hepatobiliary elimination. The grafting of the different molecules has been confirmed by IR spectroscopy and elemental analysis. The colloidal stability of functionalized NS10 has been evaluated in water and in different physiological media. All functionalized NS10 were stable over a long period of time and displayed a mean hydrodynamic diameter smaller than 50 nm whatever the molecule architecture or dendron generation. Only the NS10@L1 showed less stability in biological media at high ionic concentration. NMRD profiles and relaxivity measurements highlighted the influence of the molecule architecture on the water diffusion close to the magnetic core thus influencing the relaxation properties at low magnetic field. Coupling of a fluorescent dye on the functionalized NS10 allowed investigating their biodistribution and highlighting urinary and hepato-biliary eliminations.

Graphical abstract: Validation of a dendron concept to tune colloidal stability, MRI relaxivity and bioelimination of functional nanoparticles

Article information

Article type
Paper
Submitted
25 Nov 2014
Accepted
07 Jan 2015
First published
09 Jan 2015

J. Mater. Chem. B, 2015,3, 1484-1494

Validation of a dendron concept to tune colloidal stability, MRI relaxivity and bioelimination of functional nanoparticles

A. Walter, A. Garofalo, A. Parat, J. Jouhannaud, G. Pourroy, E. Voirin, S. Laurent, P. Bonazza, J. Taleb, C. Billotey, L. Vander Elst, R. N. Muller, S. Begin-Colin and D. Felder-Flesch, J. Mater. Chem. B, 2015, 3, 1484 DOI: 10.1039/C4TB01954G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements