Issue 61, 2015

New insights into the kinetic target-guided synthesis of protein ligands

Abstract

The kinetic target-guided synthesis (KTGS) strategy is an unconventional discovery approach that takes advantage of the presence of the biological target itself in order to irreversibly assemble the best inhibitors from an array of building blocks. This strategy has grown over the last two decades notably after the introduction of the in situ click chemistry concept by Sharpless and colleagues in the early 2000s based on the use of the Huisgen cycloaddition between terminal alkynes and azides. KTGS is a captivating area of research offering an unprecedented and powerful strategy to probe the macromolecular complexity and dynamics of biological targets. After a brief introduction listing all chemical ligation reactions reported to date in KTGS, this review focuses on the last five years' progress to expand the repertoire of the click or “click-like” tool box targeting proteins, as well as to overcome limitations arising in particular from false negatives, i.e. potent ligands that are not formed, or formed in undetectable trace amounts. Furthermore, we wish to analyze the new twists and novelties described in some of these applications in order to better understand the conditions that govern this strategy and the extent to which it can be developed and generalized for a more efficient process.

Graphical abstract: New insights into the kinetic target-guided synthesis of protein ligands

Article information

Article type
Feature Article
Submitted
20 May 2015
Accepted
25 Jun 2015
First published
25 Jun 2015

Chem. Commun., 2015,51, 12158-12169

New insights into the kinetic target-guided synthesis of protein ligands

E. Oueis, C. Sabot and P. Renard, Chem. Commun., 2015, 51, 12158 DOI: 10.1039/C5CC04183J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements