Issue 41, 2015

Nanostructured copper sulfides: synthesis, properties and applications

Abstract

Among different metal chalcogenides, copper sulfides have been extensively studied in the past few years due to their semiconducting and non-toxic nature, making them useful in a wide range of applications from the energy to the biomedical fields. A series of stoichiometric compositions of copper sulfides from Cu-rich, Cu2S to Cu-deficient, CuS2 exist with different crystal structures as well as phases, resulting in different unique properties. The suitable band gap values in the range of 1.2–1.5 eV and unique optoelectronic properties indicate that the material is photocatalytically active and exhibits excellent plasmonic behavior. The material is also known for promising thermoelectric properties, converting waste heat into electricity through the Seebeck effect. The nanodimensional form of copper sulfides promotes their use to a more advanced level, tuning their properties with the size of the materials. In view of this, the present review article is focused on the compositions, phases and crystal structures, and different synthetic methodologies involved in the fabrication of 0D, 1D and 2D nanostructured copper sulfides. Moreover, recent advancements on their use in various applications will also be briefly discussed.

Graphical abstract: Nanostructured copper sulfides: synthesis, properties and applications

Article information

Article type
Highlight
Submitted
05 Jul 2015
Accepted
07 Sep 2015
First published
07 Sep 2015

CrystEngComm, 2015,17, 7801-7815

Author version available

Nanostructured copper sulfides: synthesis, properties and applications

P. Roy and S. K. Srivastava, CrystEngComm, 2015, 17, 7801 DOI: 10.1039/C5CE01304F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements