Issue 17, 2015

The electronic, optical and magnetic consequences of delocalization in multifunctional donor–acceptor organic polymers

Abstract

Two organic polymers containing alternating electron donating triarylamine and electron accepting thiazolo[5,4-d]thiazole (TzTz) moieties have been synthesized and their redox states investigated. When donor and acceptor units are proximal (polymer 1), electron density is delocalized, leading to a small electrical and optical band gap; these are larger with the inclusion of an adjoining alkynyl-phenyl bridge (polymer 2), where electron density is more localized due to the rotation of the monomer units. As a result, 1 and 2 display different optical and fluorescence properties in their neutral states. Upon chemical and electrochemical redox reactions, radicals form in both 1 and 2, yielding magnetic materials that display temperature-independent paramagnetism, attributable to delocalization of radical spins along the polymeric backbones. The ability to convert between diamagnetic and paramagnetic states upon chemical oxidation and/or reduction allows for the materials to display switchable magnetism and fluorescence, imparting multifunctionality to these solid-state purely organic materials.

Graphical abstract: The electronic, optical and magnetic consequences of delocalization in multifunctional donor–acceptor organic polymers

Supplementary files

Article information

Article type
Paper
Submitted
07 Jan 2015
Accepted
27 Mar 2015
First published
27 Mar 2015

Phys. Chem. Chem. Phys., 2015,17, 11252-11259

Author version available

The electronic, optical and magnetic consequences of delocalization in multifunctional donor–acceptor organic polymers

F. J. Rizzuto, C. Hua, B. Chan, T. B. Faust, A. Rawal, C. F. Leong, J. M. Hook, C. J. Kepert and D. M. D'Alessandro, Phys. Chem. Chem. Phys., 2015, 17, 11252 DOI: 10.1039/C5CP00081E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements