Issue 12, 2015

The role of MoS2 as an interfacial layer in graphene/silicon solar cells

Abstract

The role of MoS2 as an effective interfacial layer in graphene/silicon solar cells is systematically investigated by varying MoS2 film annealing temperature and thickness. It is found that the power conversion efficiency (PCE) is increased by ∼100% from ∼2.3% to ∼4.4% with 80 °C annealed MoS2 film whereas it drops significantly to ∼0.6% with 200 °C annealed MoS2 film. The results are well explained based on the device energy band diagram. That is, the incorporation of MoS2(80) films leads to the formation of type II structure, facilitating hole transport; while valence band mismatch is formed with MoS2(200) films due to the increase in the work function of MoS2. Besides, the PCE increases gradually with decreasing MoS2 film thickness, and “saturates” at about 2 nm. The PCE can be further enhanced to ∼6.6% with the aid of silicon surface passivation. Our work demonstrates that MoS2 is an excellent interfacial layer to improve the PCE with low-temperature annealing (80 °C in air), which may be helpful in developing efficient and low-cost G/Si solar cells.

Graphical abstract: The role of MoS2 as an interfacial layer in graphene/silicon solar cells

Supplementary files

Article information

Article type
Paper
Submitted
18 Jan 2015
Accepted
13 Feb 2015
First published
17 Feb 2015

Phys. Chem. Chem. Phys., 2015,17, 8182-8186

The role of MoS2 as an interfacial layer in graphene/silicon solar cells

K. Jiao, C. Duan, X. Wu, J. Chen, Y. Wang and Y. Chen, Phys. Chem. Chem. Phys., 2015, 17, 8182 DOI: 10.1039/C5CP00321K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements