Issue 38, 2015

Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold

Abstract

A light-induced photoluminescence (PL) enhancement in surface-deposited methylammonium lead iodide (CH3NH3PbI3) perovskites was investigated in detail using time-resolved luminescence microscopy. We found the PL intensity to increase up to three orders of magnitude upon light illumination with an excitation power density of 0.01–1 W cm−2. The PL enhancement is accompanied by an increase of the PL lifetime from several nanoseconds to several hundred nanoseconds and also by an increase of the initial amplitude of the PL decay. The latter suggests excited state quenching at the subpicosecond timescale. We propose a model where the trapping sites responsible for non-radiative charge recombination can be de-activated by a photochemical reaction involving oxygen. The reaction zone is spatially limited by the excitation light-penetration depth and diffusion length of the charge carriers. The latter increases in the course of the light-curing process making the reaction zone spreading from the surface towards the interior of the crystal. The PL enhancement can be reversed by switching on/off the excitation light or switching the atmosphere between oxygen and nitrogen. Slow diffusion of the reactants and products and equilibrium between the active and “cured” trapping sites are proposed to be the reasons for peculiar responses of PL to such varied experimental conditions.

Graphical abstract: Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold

Supplementary files

Article information

Article type
Paper
Submitted
27 Jul 2015
Accepted
27 Aug 2015
First published
27 Aug 2015

Phys. Chem. Chem. Phys., 2015,17, 24978-24987

Author version available

Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold

Y. Tian, M. Peter, E. Unger, M. Abdellah, K. Zheng, T. Pullerits, A. Yartsev, V. Sundström and I. G. Scheblykin, Phys. Chem. Chem. Phys., 2015, 17, 24978 DOI: 10.1039/C5CP04410C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements