Issue 46, 2015

How fluorescent labelling alters the solution behaviour of proteins

Abstract

A complete understanding of the role of molecular anisotropy in directing the self assembly of colloids and proteins remains a challenge for soft matter science and biophysics. For proteins in particular, the complexity of the surface at a molecular level poses a challenge for any theoretical and numerical description. A soft matter approach, based on patchy models, has been useful in describing protein phase behaviour. In this work we examine how chemical modification of the protein surface, by addition of a fluorophore, affects the physical properties of protein solutions. By using a carefully controlled experimental protein model (human gamma-D crystallin) and numerical simulations, we demonstrate that protein solution behaviour defined by anisotropic surface effects can be captured by a custom patchy particle model. In particular, the chemical modification is found to be equivalent to the addition of a large hydrophobic surface patch with a large attractive potential energy well, which produces a significant increase in the temperature at which liquid–liquid phase separation occurs, even for very low fractions of fluorescently labelled proteins. These results are therefore directly relevant to all applications based on the use of fluorescent labelling by chemical modification, which have become increasingly important in the understanding of biological processes and biophysical interactions.

Graphical abstract: How fluorescent labelling alters the solution behaviour of proteins

Article information

Article type
Paper
Submitted
29 Jul 2015
Accepted
19 Oct 2015
First published
21 Oct 2015

Phys. Chem. Chem. Phys., 2015,17, 31177-31187

Author version available

How fluorescent labelling alters the solution behaviour of proteins

M. K. Quinn, N. Gnan, S. James, A. Ninarello, F. Sciortino, E. Zaccarelli and J. J. McManus, Phys. Chem. Chem. Phys., 2015, 17, 31177 DOI: 10.1039/C5CP04463D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements