Issue 6, 2016

Selective catalytic reduction of NO by NH3 over CuO–CeO2 in the presence of SO2

Abstract

SO2-induced deactivation of selective catalytic reduction of NO over CuO–CeO2 was studied. In the case of reaction under low O2 concentration of 1.0 vol%, SO2 severely deactivated the catalyst at 240 °C with a surface S atomic concentration as low as 1.34%. However, the deactivated catalyst could be reactivated during online NO reduction under 5.0 vol% O2 without decreasing the surface S concentration of the catalyst, which could be attributed to the involvement of NO2 in the reactions. NO2 could promote the NO removal through three reaction routes: fast SCR reaction, reaction between NO2 and NH3, and reaction between NO2 and NH4+. Especially under conditions of 10% O2, the reaction between NO2 and NH3/NH4+ induced the formation of extra NHX<3 species which promoted the decomposition of surface-deposited sulfate to SO2 with the assistance of Ce2O3, further suppressed the accumulation of sulfate on the catalyst surface, and finally suppressed the SO2-induced catalyst deactivation.

Graphical abstract: Selective catalytic reduction of NO by NH3 over CuO–CeO2 in the presence of SO2

Article information

Article type
Paper
Submitted
28 Aug 2015
Accepted
13 Oct 2015
First published
15 Oct 2015

Catal. Sci. Technol., 2016,6, 1719-1725

Author version available

Selective catalytic reduction of NO by NH3 over CuO–CeO2 in the presence of SO2

B. Li, Z. Ren, Z. Ma, X. Huang, F. Liu, X. Zhang and H. Yang, Catal. Sci. Technol., 2016, 6, 1719 DOI: 10.1039/C5CY01430A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements