Issue 12, 2016

Partial oxidation of methane to synthesis gas over Pt nanoparticles supported on nanocrystalline CeO2 catalyst

Abstract

Pt-nanoparticles supported on CeO2 have been prepared by a post synthesis method (Pt–CeO2PS). In the post synthesis method, CeO2 nanoparticles were prepared by a hydrothermal method, followed by the deposition of Pt nanoparticles over the CeO2. The prepared catalyst was characterized by XRD, BET-surface area, TPR, SEM, TEM, XPS and XAFS. It was observed that the catalyst prepared by the post synthesis method contained Pt nanoparticles with sizes between 2–5 nm supported on CeO2 nanoparticles with sizes between 20–60 nm. The catalytic performance of the Pt–CeO2PS catalyst was evaluated in the partial oxidation of methane for synthesis gas production. The Pt–CeO2PS catalyst could activate methane at 350 °C. We believe that the nanosized Pt particles and the synergy between the Pt particles, the CeO2 nanoparticles and the presence of a strong metal–support interaction play key roles in the activation of methane at such a low temperature. Different reaction parameters, like Pt-loading, reaction temperature, space velocity, and time on stream, were studied in detail. The Pt–CeO2PS catalyst does not deactivate till 100 h with a constant H2/CO mole ratio of 1.9 at 800 °C.

Graphical abstract: Partial oxidation of methane to synthesis gas over Pt nanoparticles supported on nanocrystalline CeO2 catalyst

Supplementary files

Article information

Article type
Paper
Submitted
02 Dec 2015
Accepted
16 Feb 2016
First published
17 Feb 2016

Catal. Sci. Technol., 2016,6, 4601-4615

Partial oxidation of methane to synthesis gas over Pt nanoparticles supported on nanocrystalline CeO2 catalyst

R. K. Singha, S. Ghosh, S. S. Acharyya, A. Yadav, A. Shukla, T. Sasaki, A. M. Venezia, C. Pendem and R. Bal, Catal. Sci. Technol., 2016, 6, 4601 DOI: 10.1039/C5CY02088C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements