Issue 38, 2015

High-yield, fluoride-free and large-scale synthesis of MIL-101(Cr)

Abstract

MIL-101(Cr), one of the most important prototypical MOFs, is well investigated and widely used in many scientific fields. With regard to MOF synthesis in general, the addition of a modifier is commonly used to improve the properties of the products. The effect of inorganic (mineral) and organic acid modifiers was thoroughly investigated in the synthesis of MIL-101(Cr) and HNO3 could increase the yield to over 80% of a product with average SBET > 3200 m2 g−1 in repeated experiments (from an average of 50% in most published syntheses) in small-scale laboratory synthesis. The large-scale synthesis could use the finding of HNO3 addition and produce MIL-101(Cr) in >100 g quantities with yields near 70% and BET-surface areas near 4000 m2 g−1. The addition of acetic acid (CH3COOH) together with seeding could decrease the reaction temperature, the lowest being 160 °C (from typically 220 °C in published procedures), with still relatively good yield and BET surface area of the product. The use of other strong inorganic or weak carboxylic acids as modulators typically caused a decrease in yield and porosity.

Graphical abstract: High-yield, fluoride-free and large-scale synthesis of MIL-101(Cr)

Supplementary files

Article information

Article type
Paper
Submitted
10 Jul 2015
Accepted
19 Aug 2015
First published
19 Aug 2015
This article is Open Access
Creative Commons BY-NC license

Dalton Trans., 2015,44, 16791-16801

Author version available

High-yield, fluoride-free and large-scale synthesis of MIL-101(Cr)

T. Zhao, F. Jeremias, I. Boldog, B. Nguyen, S. K. Henninger and C. Janiak, Dalton Trans., 2015, 44, 16791 DOI: 10.1039/C5DT02625C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements