Issue 41, 2015

Earth-abundant NiS co-catalyst modified metal-free mpg-C3N4/CNT nanocomposites for highly efficient visible-light photocatalytic H2 evolution

Abstract

In the present work, the earth-abundant NiS co-catalyst modified mesoporous graphite-like C3N4 (mpg-C3N4)/CNT nanocomposites were prepared via a two-step strategy: the sol–gel method and the direct precipitation process. The mpg-C3N4/CNT/NiS composite photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy, photoluminescence spectroscopy (PL), photoelectrochemical (PEC) and electrochemical impedance spectra (EIS) experiments. The photocatalytic H2-production activity over the composite catalysts was also evaluated by using an aqueous solution containing triethanolamine under visible light (λ ≥ 420 nm). The results showed that the loading of earth-abundant NiS co-catalysts onto metal-free mpg-C3N4/CNT nanocomposites can remarkably enhance their photocatalytic H2-production activity. The optimal loading amount of NiS on metal-free mpg-C3N4/CNT nanocomposites was about 1 wt%. The as-obtained mpg-C3N4/CNT/1% NiS ternary composite photocatalyst exhibits the best H2-evolution activity with the highest rate of about 521 μmol g−1 h−1 under visible light (λ ≥ 420 nm), which is almost 148 times that of a pure mpg-C3N4/CNT sample. The enhanced photocatalytic activity can be mainly attributed to the synergistic effect of effectively promoted separation of photo-generated electron–hole pairs and enhanced H2-evolution kinetics. The co-loading of nanocarbon materials and earth-abundant co-catalysts onto metal-free mpg-C3N4 photocatalysts offers great potential for practical applications in photocatalytic H2 evolution under visible light illumination.

Graphical abstract: Earth-abundant NiS co-catalyst modified metal-free mpg-C3N4/CNT nanocomposites for highly efficient visible-light photocatalytic H2 evolution

Supplementary files

Article information

Article type
Paper
Submitted
16 Jul 2015
Accepted
10 Sep 2015
First published
15 Sep 2015

Dalton Trans., 2015,44, 18260-18269

Author version available

Earth-abundant NiS co-catalyst modified metal-free mpg-C3N4/CNT nanocomposites for highly efficient visible-light photocatalytic H2 evolution

Y. Zhong, J. Yuan, J. Wen, X. Li, Y. Xu, W. Liu, S. Zhang and Y. Fang, Dalton Trans., 2015, 44, 18260 DOI: 10.1039/C5DT02693H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements