Issue 46, 2015

Synthesis, and crystal and electronic structure of sodium metal phosphate for use as a hybrid capacitor in non-aqueous electrolyte

Abstract

Energy storage devices based on sodium have been considered as an alternative to traditional lithium based systems because of the natural abundance, cost effectiveness and low environmental impact of sodium. Their synthesis, and crystal and electronic properties have been discussed, because of the importance of electronic conductivity in supercapacitors for high rate applications. The density of states of a mixed sodium transition metal phosphate (maricite, NaMn1/3Co1/3Ni1/3PO4) has been determined with the ab initio generalized gradient approximation (GGA)+Hubbard term (U) method. The computed results for the mixed maricite are compared with the band gap of the parent NaFePO4 and the electrochemical experimental results are in good agreement. A mixed sodium transition metal phosphate served as an active electrode material for a hybrid supercapacitor. The hybrid device (maricite versus carbon) in a non-aqueous electrolyte shows redox peaks in the cyclic voltammograms and asymmetric profiles in the charge–discharge curves while exhibiting a specific capacitance of 40 F g−1 and these processes are found to be quasi-reversible. After long term cycling, the device exhibits excellent capacity retention (95%) and coulombic efficiency (92%). The presence of carbon and the nanocomposite morphology, identified through X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) studies, ensures the high rate capability while offering possibilities to develop new cathode materials for sodium hybrid devices.

Graphical abstract: Synthesis, and crystal and electronic structure of sodium metal phosphate for use as a hybrid capacitor in non-aqueous electrolyte

Article information

Article type
Paper
Submitted
01 Sep 2015
Accepted
18 Oct 2015
First published
22 Oct 2015

Dalton Trans., 2015,44, 20108-20120

Author version available

Synthesis, and crystal and electronic structure of sodium metal phosphate for use as a hybrid capacitor in non-aqueous electrolyte

M. M. Sundaram, T. Watcharatharapong, S. Chakraborty, R. Ahuja, S. Duraisamy, P. T. Rao and N. Munichandraiah, Dalton Trans., 2015, 44, 20108 DOI: 10.1039/C5DT03394B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements