Issue 1, 2016

Nitrogen-doped activated carbon for a high energy hybrid supercapacitor

Abstract

Nitrogen-doped activated carbons (NACs) were prepared through a one-step process. The obtained NACs show high surface areas of up to 2900 m2 g−1 with a moderate N content of up to 4 wt%. Electrochemical evaluation of the NACs shows a high specific capacity of 129 mA h g−1 (185 F g−1) in an organic electrolyte at a current density of 0.4 A g−1, as well as excellent rate capability and cycling stability. The hybrid-type supercapacitor assembled using the NACs and a Si/C electrode exhibits a high material level energy density of 230 W h kg−1 at 1747 W kg−1. The hybrid device achieved 76.3% capacity retention after 8000 cycles tested at 1.6 A g−1.

Graphical abstract: Nitrogen-doped activated carbon for a high energy hybrid supercapacitor

Supplementary files

Article information

Article type
Communication
Submitted
14 Oct 2015
Accepted
11 Nov 2015
First published
18 Nov 2015

Energy Environ. Sci., 2016,9, 102-106

Author version available

Nitrogen-doped activated carbon for a high energy hybrid supercapacitor

B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang and M. Cai, Energy Environ. Sci., 2016, 9, 102 DOI: 10.1039/C5EE03149D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements