Issue 6, 2015

One-pot synthesis of B-doped three-dimensional reduced graphene oxide via supercritical fluid for oxygen reduction reaction

Abstract

There has been a great deal of interest recently in three-dimensional (3D) graphene based materials, as they exhibit large surface areas, unique electronic properties, and other attractive features. Particularly, 3D graphene doped with heteroatoms catalysts show high electrocatalytic activity toward oxygen reduction reaction (ORR), which can be used as metal-free catalysts. Most of the existing synthesis strategies of 3D graphene invariably involve multiple steps and procedures are often energy intensive and time-consuming. In this paper, we reported a one-pot and green method to synthesize boron-doped 3D reduced graphene oxide (B-3DrGO) using the supercritical carbon dioxide (ScCO2) technique. The resulting products exhibit hierarchical porous structures, leading to a high specific surface area of 541 m2 gāˆ’1. A high content of B (2.9 at%) was detected in the product, suggesting that B-doping was efficient using this technique. The B-3DrGO displays electrocatalytic activity toward ORR, which is comparable to the commercially available Pt/C (20 wt%) catalyst, in addition to their superior durability and resistance to the crossover effect. Moreover, the supercritical fluid technique, which uses non-flammable, essentially nontoxic, inexpensive, and environmentally benign CO2, is a new and green approach for the synthesis of heteroatom doped 3D graphene.

Graphical abstract: One-pot synthesis of B-doped three-dimensional reduced graphene oxide via supercritical fluid for oxygen reduction reaction

Supplementary files

Article information

Article type
Paper
Submitted
21 Mar 2015
Accepted
27 Apr 2015
First published
27 Apr 2015

Green Chem., 2015,17, 3552-3560

Author version available

One-pot synthesis of B-doped three-dimensional reduced graphene oxide via supercritical fluid for oxygen reduction reaction

Y. Zhou, C. H. Yen, S. Fu, G. Yang, C. Zhu, D. Du, P. C. Wo, X. Cheng, J. Yang, C. M. Wai and Y. Lin, Green Chem., 2015, 17, 3552 DOI: 10.1039/C5GC00617A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements