Issue 11, 2015

Influence of bio-based solvents on the catalytic reductive fractionation of birch wood

Abstract

Reductive catalytic fractionation constitutes a promising approach to separate lignocellulose into a solid carbohydrate pulp and a stable liquid lignin oil. The process is able to extract and convert most of the lignin into soluble mono-, di- and oligomers, while retaining most of the carbohydrates in the pulp. This contribution studies the impact of the solvent choice on both pulp retention and delignification efficiency. Several bio-derivable solvents with varying properties were therefore tested in the Pd/C-catalyzed reductive liquid processing of birch wood. Though a high solvent polarity favors delignification, a too polar solvent like water causes significant solubilization of carbohydrates. A new empirical descriptor, denoted as ‘lignin-first delignification efficiency’ (LFDE), is introduced as a measure of efficient wood processing into soluble lignin derivatives and solid sugar pulp. Of all tested solvents, methanol and ethylene glycol showed the highest LFDE values, and these values could be increased by increasing both reaction time and temperature. Moreover, substantial differences regarding the process characteristics and analyzed product fractions between these two different solvents were discussed extensively. Most striking is the impact of the solvent on the pulp macrostructure, with methanol yielding a pulp composed of aggregated fiber cells, whereas the ethylene glycol pulp comprises nicely separated fiber cells.

Graphical abstract: Influence of bio-based solvents on the catalytic reductive fractionation of birch wood

Supplementary files

Article information

Article type
Paper
Submitted
26 Jun 2015
Accepted
03 Sep 2015
First published
03 Sep 2015

Green Chem., 2015,17, 5035-5045

Author version available

Influence of bio-based solvents on the catalytic reductive fractionation of birch wood

W. Schutyser, S. Van den Bosch, T. Renders, T. De Boe, S.-F. Koelewijn, A. Dewaele, T. Ennaert, O. Verkinderen, B. Goderis, C. M. Courtin and B. F. Sels, Green Chem., 2015, 17, 5035 DOI: 10.1039/C5GC01442E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements