Issue 6, 2016

Homogeneous and heterogenised masked N-heterocyclic carbenes for bio-based cyclic carbonate synthesis

Abstract

(Multifunctional) cyclic carbonates are generating much interest, with bio-based bis-cyclic compounds attracting attention from the polymer sector as potential renewable monomers for systems such as non-isocyanate polyurethanes. Here, the efficient synthesis of one such substrate, diglycerol dicarbonate, utilising CO2-masked N-heterocyclic carbene (NHC) organocatalysts is demonstrated. The 1,3-dialkylimidazole-2-carboxylate pre-catalyst, which can be produced both in and ex situ, yields the desired cyclic product, expressing full conversion within 3 h when using the ex situ synthesised pre-catalyst with 5 mol% loading, but can also operate with 1 mol% loading efficiently. Substituted derivatives of the imidazole-based organocatalyst have also been investigated to gauge the sensitivity of the system. A number of bio-based diols are also investigated, with 1,2-, 2,3- and 1,3-diols yielding five- and six-membered cyclic products, respectively; 1,3-diols are significantly more reluctant to cyclisation, yielding both 1- and 3-monocarbonates, dicarbonates and the cyclic products. A more in depth study was also carried out on glycerol as a substrate, both in its pure a crude form, providing insight into how impurities impact on the activity of the carbene catalyst. Through 13C-labelled reagent experiments, a mechanism is proposed for the conversion of diols to their cyclic carbonate analogues. Finally, the organocatalyst was immobilized on siliceous mesostructured cellular foam (MCF). Using an alternative activation procedure, a supported, masked NHC catalyst is achieved and characterised with DRIFTS, TGA and 13C solid-state NMR. This heterogenised catalyst can be easily recovered and reused up to three times expressing its original activity if properly regenerated by a simple ion exchange procedure. Of important note, this system can also successfully convert crude glycerol with high selectivity observed for the cyclic product.

Graphical abstract: Homogeneous and heterogenised masked N-heterocyclic carbenes for bio-based cyclic carbonate synthesis

Supplementary files

Article information

Article type
Paper
Submitted
30 Aug 2015
Accepted
01 Nov 2015
First published
09 Nov 2015
This article is Open Access
Creative Commons BY-NC license

Green Chem., 2016,18, 1605-1618

Homogeneous and heterogenised masked N-heterocyclic carbenes for bio-based cyclic carbonate synthesis

J. A. Stewart, R. Drexel, B. Arstad, E. Reubsaet, B. M. Weckhuysen and P. C. A. Bruijnincx, Green Chem., 2016, 18, 1605 DOI: 10.1039/C5GC02046H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements