Issue 13, 2015

Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves

Abstract

The realization of microscale total analysis systems and lab-on-a-chip technologies requires efficient actuation (mixing, pumping, atomizing, nebulizing, driving, etc.) of fluids on the microscopic scale and dexterous manipulation (separation, sorting, trapping, concentration, merging, patterning, aligning, focusing, etc.) of micro-objects (cells, droplets, particles, nanotubes, etc.) in open (sessile droplets) as well as confined spaces (microchannels/chambers). These capabilities have been recently achieved using powerful acoustofluidic techniques based on high-frequency (10–1000 MHz) surface acoustic waves (SAWs). SAW-based miniaturized microfluidic devices are best known for their non-invasive properties, low costs, and ability to manipulate micro-objects in a label-free manner. The energy-efficient SAWs are also compatible with conventional microfabrication technologies. The present work critically analyses recent reports describing the use of SAWs in microfluidic actuation and micro-object manipulation. Acoustofluidic techniques may be categorized according to the use of travelling SAWs (TSAWs) or standing SAWs (SSAWs). TSAWs are used to actuate fluids and manipulate micro-objects via acoustic streaming flow (ASF) as well as acoustic radiation force (ARF). SSAWs are mainly used for micro-object manipulation and are rarely employed for microfluidic actuation. We have reviewed reports of new technological developments that have not been covered in other recent reviews. In the end, we describe the future prospects of SAW-based acoustofluidic technologies.

Graphical abstract: Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves

Article information

Article type
Frontier
Submitted
06 Mar 2015
Accepted
07 May 2015
First published
08 May 2015

Lab Chip, 2015,15, 2722-2738

Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves

G. Destgeer and H. J. Sung, Lab Chip, 2015, 15, 2722 DOI: 10.1039/C5LC00265F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements