Issue 12, 2015

Non-contact acoustic capture of microparticles from small plasma volumes

Abstract

Microparticles (MP) are small (100–1000 nm) membrane vesicles shed by cells as a response to activation, stress or apoptosis. Platelet-derived MP (PMP) has been shown to reflect the pathophysiological processes of a range of cardiovascular diseases and there is a potential clinical value in using PMPs as biomarkers, as well as a need to better understand the biology of these vesicles. The current method for isolating MP depends on differential centrifugation steps, which require relatively large sample volumes and have been shown to compromise the integrity and composition of the MP population. We present a novel method for rapid, non-contact capture of PMP in minute sample volumes based on a microscale acoustic standing wave technology. Capture of PMPs from plasma is shown by scanning electron microscopy and flow cytometry. Furthermore, the system is characterized with regards to plasma sample concentration and flow rate. Finally, the technique is compared to a standard differential centrifugation protocol using samples from both healthy controls and ST-elevation myocardial infarction (STEMI) patient samples. The acoustic system is shown to offer a quick and automated setup for extracting microparticles from small sample volumes with higher recovery than a standard differential centrifugation protocol.

Graphical abstract: Non-contact acoustic capture of microparticles from small plasma volumes

Article information

Article type
Paper
Submitted
11 Mar 2015
Accepted
21 Apr 2015
First published
21 Apr 2015
This article is Open Access
Creative Commons BY license

Lab Chip, 2015,15, 2588-2596

Author version available

Non-contact acoustic capture of microparticles from small plasma volumes

M. Evander, O. Gidlöf, B. Olde, D. Erlinge and T. Laurell, Lab Chip, 2015, 15, 2588 DOI: 10.1039/C5LC00290G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements