Issue 18, 2015

Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells

Abstract

Cancer stem cells (CSCs) have the ability to transform into bulk cancer cells, to promote tumor growth and establish tumor metastasis. To effectively inhibit tumor growth and prevent metastasis, treatments with conventional chemotherapy drugs should be combined with CSC targeted drugs. In this study, we describe the synthesis and characterization of a new amphiphilic polymer, hyaluronic acid-cystamine-polylactic-co-glycolic acid (HA-SS-PLGA), composed of a hydrophobic PLGA head and a hydrophilic HA segment linked by a bioreducible disulfide bond. With a double emulsion method, a nano delivery system was constructed to deliver doxorubicin (DOX) and cyclopamine (CYC, a primary inhibitor of the hedgehog signaling pathway of CSCs) to both a CD44-overexpressing breast CSC subpopulation and bulk breast cancer cells and allow an on-demand release. The resulting drug-loaded NPs exhibited a redox-responsive drug release profile. Dual drug-loaded particles potently diminished the number and size of tumorspheres and HA showed a targeting effect towards breast CSCs. In vivo combination therapy further demonstrated a remarkable synergistic anti-tumor effect and prolonged survival compared to mono-therapy using the orthotopic mammary fat pad tumor growth model. The co-delivery of drug and the CSC specific inhibitor towards targeted cancer chemotherapeutics provides an insight into anticancer strategy with facile control and high efficacy.

Graphical abstract: Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells

Supplementary files

Article information

Article type
Paper
Submitted
14 Feb 2015
Accepted
30 Mar 2015
First published
02 Apr 2015

Nanoscale, 2015,7, 8607-8618

Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells

K. Hu, H. Zhou, Y. Liu, Z. Liu, J. Liu, J. Tang, J. Li, J. Zhang, W. Sheng, Y. Zhao, Y. Wu and C. Chen, Nanoscale, 2015, 7, 8607 DOI: 10.1039/C5NR01084E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements