Issue 17, 2015

Scaling of graphene integrated circuits

Abstract

The influence of transistor size reduction (scaling) on the speed of realistic multi-stage integrated circuits (ICs) represents the main performance metric of a given transistor technology. Despite extensive interest in graphene electronics, scaling efforts have so far focused on individual transistors rather than multi-stage ICs. Here we study the scaling of graphene ICs based on transistors from 3.3 to 0.5 μm gate lengths and with different channel widths, access lengths, and lead thicknesses. The shortest gate delay of 31 ps per stage was obtained in sub-micron graphene ROs oscillating at 4.3 GHz, which is the highest oscillation frequency obtained in any strictly low-dimensional material to date. We also derived the fundamental Johnson limit, showing that scaled graphene ICs could be used at high frequencies in applications with small voltage swing.

Graphical abstract: Scaling of graphene integrated circuits

Supplementary files

Article information

Article type
Paper
Submitted
16 Feb 2015
Accepted
27 Mar 2015
First published
15 Apr 2015

Nanoscale, 2015,7, 8076-8083

Author version available

Scaling of graphene integrated circuits

M. Bianchi, E. Guerriero, M. Fiocco, R. Alberti, L. Polloni, A. Behnam, E. A. Carrion, E. Pop and R. Sordan, Nanoscale, 2015, 7, 8076 DOI: 10.1039/C5NR01126D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements