Issue 25, 2015

Quantitative analysis of the size effect of room temperature nanoimprinted P3HT nanopillar arrays on the photovoltaic performance

Abstract

We develop a solvent-assisted room temperature nanoimprint lithography (SART-NIL) technique to fabricate an ideal active layer consisting of poly(3-hexylthiophene) nanopillar arrays surrounded by [6,6]-phenyl-C61-butyric acid methyl ester. Characterization by scanning electron microscopy, two-dimensional grazing incidence wide angle X-rays diffraction, and conducting atomic force microscopy reveals that the SART-NIL technique can precisely control the size of P3HT nanopillar arrays. With the decrease in diameters of P3HT nanopillar arrays, the P3HT nanopillar arrays exhibit a more preferable face-on molecular orientation, enhanced UV-vis absorption and higher conducting ability along the direction perpendicular to the substrate. The ordered bulk heterojunction film consisting of P3HT nanopillar arrays with a diameter of ∼45 nm (OBHJ-45) gives face-on orientation, a high interfacial area of 2.87, a high conducting ability of ∼130 pA and efficient exciton diffusion and dissociation. The polymer solar cell (PSC) based on an OBHJ-45 film exhibits a significantly improved device performance compared with those of PSCs based on the P3HT nanoapillar arrays with diameters ∼100 nm and ∼60 nm. We believe that the SART-NIL technique is a powerful tool for fabricating an ideal active layer for high performance PSCs.

Graphical abstract: Quantitative analysis of the size effect of room temperature nanoimprinted P3HT nanopillar arrays on the photovoltaic performance

Supplementary files

Article information

Article type
Paper
Submitted
12 Apr 2015
Accepted
14 May 2015
First published
18 May 2015

Nanoscale, 2015,7, 11024-11032

Author version available

Quantitative analysis of the size effect of room temperature nanoimprinted P3HT nanopillar arrays on the photovoltaic performance

G. Ding, C. Li, X. Li, Y. Wu, J. Liu, Y. Li, Z. Hu and Y. Li, Nanoscale, 2015, 7, 11024 DOI: 10.1039/C5NR02328A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements