Issue 27, 2015

Synthesis of N, F and S co-doped graphene quantum dots

Abstract

Graphene quantum dots (GQDs) are a promising category of materials with remarkable size dependent properties like tunable bandgap and photoluminescence along with the possibility of effective chemical functionalization. Doping of GQDs with heteroatoms is an interesting way of regulating their properties. Herein, we report a facile and scalable one-step synthesis of luminescent GQDs, substitutionally co-doped with N, F and S, of ∼2 nm average size by a microwave treatment of multi-walled carbon nanotubes in a customized ionic liquid medium. The use of an ionic liquid coupled with the use of a microwave technique enables not only an ultrafast process for the synthesis of co-doped GQDs, but also provides excellent photoluminescence quantum yield (70%), perhaps due to the interaction of defect clusters and dopants.

Graphical abstract: Synthesis of N, F and S co-doped graphene quantum dots

Supplementary files

Article information

Article type
Communication
Submitted
15 Apr 2015
Accepted
22 May 2015
First published
26 May 2015

Nanoscale, 2015,7, 11515-11519

Author version available

Synthesis of N, F and S co-doped graphene quantum dots

S. Kundu, R. M. Yadav, T. N. Narayanan, M. V. Shelke, R. Vajtai, P. M. Ajayan and V. K. Pillai, Nanoscale, 2015, 7, 11515 DOI: 10.1039/C5NR02427G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements