Issue 34, 2015

Efficient red luminescence from organic-soluble Au25 clusters by ligand structure modification

Abstract

An efficient method to enhance visible luminescence in a visibly non-luminescent organic-soluble 4-(tert butyl)benzyl mercaptan (SBB)-stabilized Au25 cluster has been developed. This method relies mainly on enhancing the surface charge density on the cluster by creating an additional shell of thiolate on the cluster surface, which enhances visible luminescence. The viability of this method has been demonstrated by imparting red luminescence to various ligand-protected quantum clusters (QCs), observable to the naked eye. The bright red luminescent material derived from Au25SBB18 clusters was characterized using UV-vis and luminescence spectroscopy, TEM, SEM/EDS, XPS, TG, ESI and MALDI mass spectrometry, which collectively proposed an uncommon molecular formula of Au29SBB24S, suggested to be due to different stapler motifs protecting the Au25 core. The critical role of temperature on the emergence of luminescence in QCs has been studied. The restoration of the surface ligand shell on the Au25 cluster and subsequent physicochemical modification to the cluster were probed by various mass spectral and spectroscopic techniques. Our results provide fundamental insights into the ligand characteristics determining luminescence in QCs.

Graphical abstract: Efficient red luminescence from organic-soluble Au25 clusters by ligand structure modification

Supplementary files

Article information

Article type
Paper
Submitted
26 May 2015
Accepted
21 Jul 2015
First published
05 Aug 2015

Nanoscale, 2015,7, 14305-14315

Author version available

Efficient red luminescence from organic-soluble Au25 clusters by ligand structure modification

A. Mathew, E. Varghese, S. Choudhury, S. K. Pal and T. Pradeep, Nanoscale, 2015, 7, 14305 DOI: 10.1039/C5NR03457D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements