Issue 38, 2015

Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane

Abstract

Cancer cells develop resistance to chemotherapy, and the side effects encountered seriously limit the effectiveness of treatments. For these reasons, the search for alternative therapies that target cancer cells without affecting healthy tissues is currently one of the most active areas of research on cancer. The present study focuses on a recently proposed approach for cancer cell destruction based on the targeted triggering of cancer cell spontaneous death through the mechanical vibration of anisotropic magnetic micro/nanoparticles attached to the cell membranes at low frequencies (∼20 Hz) and in weak magnetic fields (∼30 mT). The study was conducted in vitro, on human renal cancer cells with superparamagnetic-like particles. Three types of such particles made of NiFe or magnetite were prepared and characterized (either synthetic antiferromagnetic, vortex or polycrystalline with random grain anisotropy). The triggering of the apoptosis of these cancer cells was demonstrated with NiFe vortex particles and statistically characterized by flow-cytometry studies. The death pathway via apoptosis and not necrosis was identified by the clear observation of caspase activation.

Graphical abstract: Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane

Article information

Article type
Paper
Submitted
28 May 2015
Accepted
19 Aug 2015
First published
26 Aug 2015

Nanoscale, 2015,7, 15904-15914

Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane

S. Leulmi, X. Chauchet, M. Morcrette, G. Ortiz, H. Joisten, P. Sabon, T. Livache, Y. Hou, M. Carrière, S. Lequien and B. Dieny, Nanoscale, 2015, 7, 15904 DOI: 10.1039/C5NR03518J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements