Issue 32, 2015

RBC micromotors carrying multiple cargos towards potential theranostic applications

Abstract

Red blood cell (RBC)-based micromotors containing both therapeutic and diagnostic modalities are described as a means for potential theranostic applications. In this natural RBC-based multicargo-loaded micromotor system, quantum dots (QDs), anti-cancer drug doxorubicin (DOX), and magnetic nanoparticles (MNPs), were co-encapsulated into RBC micromotors. The fluorescent emission of both QDs and DOX provides direct visualization of their loading inside the RBC motors at two distinct wavelengths. The presence of MNPs within the RBCs allows for efficient magnetic guidance under ultrasound propulsion along with providing the potential for magnetic resonance imaging. The simultaneous encapsulation of the imaging nanoparticles and therapeutic payloads within the same RBC micromotor has a minimal effect upon its propulsion behavior. The ability of the RBC micromotors to transport imaging and therapeutic agents at high speed and spatial precision through a complex microchannel network is also demonstrated. Such ability to load and transport diagnostic imaging agents and therapeutic drugs within a single cell-based motor, in addition to a lower toxicity observed once the drug is encapsulated within the multicargo RBC motor, opens the door to the development of theranostic micromotors that may simultaneously treat and monitor diseases.

Graphical abstract: RBC micromotors carrying multiple cargos towards potential theranostic applications

Supplementary files

Article information

Article type
Paper
Submitted
06 Jun 2015
Accepted
11 Jul 2015
First published
17 Jul 2015

Nanoscale, 2015,7, 13680-13686

RBC micromotors carrying multiple cargos towards potential theranostic applications

Z. Wu, B. Esteban-Fernández de Ávila, A. Martín, C. Christianson, W. Gao, S. K. Thamphiwatana, A. Escarpa, Q. He, L. Zhang and J. Wang, Nanoscale, 2015, 7, 13680 DOI: 10.1039/C5NR03730A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements