Issue 38, 2015

Synthesis of in-plane and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition and chemical vapor deposition

Abstract

Graphene/hexagonal boron nitride (h-BN) heterostructures have attracted a great deal of attention in recent years due to their unique and complementary properties for use in a wide range of potential applications. However, it still remains a challenge to synthesize large-area high quality samples by a scalable growth method. In this work, we present the synthesis of both in-plane and stacked graphene/h-BN heterostructures on Cu foils by sequentially depositing h-BN via ion beam sputtering deposition (IBSD) and graphene with chemical vapor deposition (CVD). Due to a significant difference in the growth rate of graphene on h-BN and Cu, the in-plane graphene/h-BN heterostructures were rapidly formed on h-BN domain/Cu substrates. The large-area vertically stacked graphene/h-BN heterostructures were obtained by using the continuous h-BN film as a substrate. Furthermore, the well-designed sub-bilayered h-BN substrates provide direct evidence that the monolayered h-BN on Cu exhibits higher catalytic activity than the bilayered h-BN on Cu. The growth method applied here may have great potential in the scalable preparation of large-area high-quality graphene/h-BN heterostructures.

Graphical abstract: Synthesis of in-plane and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition and chemical vapor deposition

Supplementary files

Article information

Article type
Paper
Submitted
06 Jul 2015
Accepted
20 Aug 2015
First published
26 Aug 2015

Nanoscale, 2015,7, 16046-16053

Synthesis of in-plane and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition and chemical vapor deposition

J. H. Meng, X. W. Zhang, H. L. Wang, X. B. Ren, C. H. Jin, Z. G. Yin, X. Liu and H. Liu, Nanoscale, 2015, 7, 16046 DOI: 10.1039/C5NR04490A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements