Issue 38, 2015

Oligothiophene/graphene supramolecular ensembles managing light induced processes: preparation, characterization, and femtosecond transient absorption studies leading to charge-separation

Abstract

Advances in organic synthetic chemistry combined with the exceptional electronic properties of carbon allotropes, particularly graphene, is the basis used to design and fabricate novel electron donor–acceptor ensembles with desired properties for technological applications. Thiophene-based materials, which are mainly thiophene-containing polymers, are known for their notable electronic properties. In this frame moving from polymer to oligomer forms, new fundamental information would help for a better understanding of their electrochemical and photophysical properties. Furthermore, a successful combination of their electronic properties with those of graphene is a challenging goal. In this study, two oligothiophene compounds, which consist of three and nine thiophene-rings and are abbreviated 3T and 9T, respectively, were synthesized and noncovalently associated with liquid phase exfoliated few-layered graphene sheets (abbreviated eG), thus forming donor–acceptor 3T/eG and 9T/eG nanoensembes. Markedly, intra-ensemble electronic interactions between the two components in the ground and excited states were evaluated with the aid of UV-Vis and photoluminescence spectroscopy. Furthermore, redox assays revealed the one-electron oxidation of 3T accompanied by one-electron reduction due to eG in 3T/eG, whereas there were two reversible one-electron oxidations of 9T accompanied by one-electron reduction of eG9T/eG. The electrochemical band gap for the 3T/eG and 9T/eG ensembles were calculated and verified, in which the negative free-energy change for the charge-separated state of 3T/eG and 9T/eGvia the singlet excited state of 3T and 9T, respectively, were thermodynamically favorable. Finally, the results of transient pump–probe spectroscopy studies at the femtosecond time scale were supportive of charge transfer type interactions in the 3T/eG and 9T/eG ensembles. The estimated rates for intra-ensemble charge separation were found to be 9.52 × 109 s−1 and 2.2 × 1011 s−1, respectively, for 3T/eG and 9T/eG in THF, which reveal moderate to ultrafast photoinduced events in the oligothiophene/graphene supramolecular ensembles.

Graphical abstract: Oligothiophene/graphene supramolecular ensembles managing light induced processes: preparation, characterization, and femtosecond transient absorption studies leading to charge-separation

Supplementary files

Article information

Article type
Paper
Submitted
21 Jul 2015
Accepted
26 Aug 2015
First published
27 Aug 2015

Nanoscale, 2015,7, 15840-15851

Oligothiophene/graphene supramolecular ensembles managing light induced processes: preparation, characterization, and femtosecond transient absorption studies leading to charge-separation

A. Stergiou, H. B. Gobeze, I. D. Petsalakis, S. Zhao, H. Shinohara, F. D'Souza and N. Tagmatarchis, Nanoscale, 2015, 7, 15840 DOI: 10.1039/C5NR04875C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements