Issue 42, 2015

Bi-phasic titanium dioxide nanoparticles doped with nitrogen and neodymium for enhanced photocatalysis

Abstract

Bi-phasic or multi-phasic composite nanoparticles for use in photocatalysis have been produced by a new synthetic approach. Sol–gel methods are used to deposit multiple layers of active material onto soluble substrates. In this work, a layer of rutile (TiO2) was deposited onto sodium chloride pellets followed by an annealing step and a layer of anatase. After dissolving the substrate, bi-phasic nanoparticles containing half anatase and half rutile TiO2; with “Janus-like” characteristics are obtained. Nitrogen and neodymium doping of the materials were observed to enhance the photocatalytic properties both under UV and white light irradiation. The unique advantage of this synthetic method is the ability to systematically dope separate sides of the nanoparticles. Nitrogen doping was found to be most effective on the anatase side of the nanoparticle while neodymium was found to be most effective on the rutile side. Rhodamine B dye was effectively photodegraded by co-doped particles under white light.

Graphical abstract: Bi-phasic titanium dioxide nanoparticles doped with nitrogen and neodymium for enhanced photocatalysis

Supplementary files

Article information

Article type
Paper
Submitted
02 Sep 2015
Accepted
20 Sep 2015
First published
02 Oct 2015

Nanoscale, 2015,7, 17735-17744

Author version available

Bi-phasic titanium dioxide nanoparticles doped with nitrogen and neodymium for enhanced photocatalysis

V. Gomez, J. C. Bear, P. D. McNaughter, J. D. McGettrick, T. Watson, C. Charbonneau, P. O'Brien, A. R. Barron and C. W. Dunnill, Nanoscale, 2015, 7, 17735 DOI: 10.1039/C5NR06025G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements