Issue 5, 2016

Aligned platinum nanowire networks from surface-oriented lipid cubic phase templates

Abstract

Mesoporous metal structures featuring a bicontinuous cubic morphology have a wide range of potential applications and novel opto-electronic properties, often orientation-dependent. We describe the production of nanostructured metal films 1–2 microns thick featuring 3D-periodic ‘single diamond’ morphology that show high out-of-plane alignment, with the (111) plane oriented parallel to the substrate. These are produced by electrodeposition of platinum through a lipid cubic phase (QII) template. Further investigation into the mechanism for the orientation revealed the surprising result that the QII template, which is tens of microns thick, is polydomain with no overall orientation. When thicker platinum films are grown, they also show increased orientational disorder. These results suggest that polydomain QII samples display a region of uniaxial orientation at the lipid/substrate interface up to approximately 2.8 ± 0.3 μm away from the solid surface. Our approach gives previously unavailable information on the arrangement of cubic phases at solid interfaces, which is important for many applications of QII phases. Most significantly, we have produced a previously unreported class of oriented nanomaterial, with potential applications including metamaterials and lithographic masks.

Graphical abstract: Aligned platinum nanowire networks from surface-oriented lipid cubic phase templates

Supplementary files

Article information

Article type
Paper
Submitted
27 Sep 2015
Accepted
06 Jan 2016
First published
07 Jan 2016

Nanoscale, 2016,8, 2850-2856

Author version available

Aligned platinum nanowire networks from surface-oriented lipid cubic phase templates

S. J. Richardson, M. R. Burton, P. A. Staniec, I. S. Nandhakumar, N. J. Terrill, J. M. Elliott and A. M. Squires, Nanoscale, 2016, 8, 2850 DOI: 10.1039/C5NR06691C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements