Issue 6, 2016

A NiMoS flower-like structure with self-assembled nanosheets as high-performance hydrodesulfurization catalysts

Abstract

Uniform 3D NiMoS nanoflowers with self-assembled nanosheets were successfully synthesized via a simple hydrothermal growth method using cheap and nontoxic elemental sulfur as sulfur sources. The structure and morphology of the nanomaterials were characterized by SEM, TEM, XRD, Raman and XPS analyses, revealing that the NiMoS nanoflowers were composed of ultrathin nanosheets with a thickness of approximately 6–12 nm. The HRTEM results indicate that the curve/short MoS2 slabs on the nanosheets possess the characteristics of dislocations, distortions and discontinuity, which suggests a defect-rich structure, resulting in the exposure of additional Ni–Mo–S edge sites. The obtained NiMoS nanoflowers exhibited an excellent activity for thiophene hydrodesulfurization (HDS) and 4,6-dimethyldibenzothiophene deep HDS due to their high density of active sites. The outstanding HDS performance suggests that these NiMoS composites with a unique flower-like nanostructure could be useful as promising catalysts for deep desulfurization of fuel oils.

Graphical abstract: A NiMoS flower-like structure with self-assembled nanosheets as high-performance hydrodesulfurization catalysts

Supplementary files

Article information

Article type
Paper
Submitted
12 Dec 2015
Accepted
27 Dec 2015
First published
12 Jan 2016

Nanoscale, 2016,8, 3823-3833

A NiMoS flower-like structure with self-assembled nanosheets as high-performance hydrodesulfurization catalysts

W. Lai, Z. Chen, J. Zhu, L. Yang, J. Zheng, X. Yi and W. Fang, Nanoscale, 2016, 8, 3823 DOI: 10.1039/C5NR08841K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements