Issue 35, 2015

Designed enzymatically degradable amphiphilic conetworks by radical ring-opening polymerization

Abstract

A new route for the preparation of enzymatically degradable amphiphilic conetworks (APCNs) based on unsaturated polyesters by radical ring-opening copolymerization of vinylcyclopropane (VCP) with cyclic ketene acetal (CKA) is presented in this article. In the first step, the unsaturated biodegradable polyesters with random distribution of cross-linkable double bonds and degradable ester units were prepared by radical ring-opening copolymerization of VCP and CKA such as 2-methylene-4-phenyl-1,3-dioxolane (MPDO). Very similar reactivity ratios (rVCP = 0.23 ± 0.08 and rMPDO = 0.18 ± 0.02), unimodal gel permeation chromatography (GPC) curves and 2D NMR technique (heteronuclear multiple bond correlation, HMBC) showed the formation of random copolymers with unsaturation and ester units. The unsaturated units were used for cross-linking by radical polymerization with a hydrophilic macromonomer (oligo(ethylene glycol) methacrylate, OEGMA) in a second step for the formation of enzymatically degradable amphiphilic conetworks (APCNs). Enzymatic degradability was studied using Lipase from Pseudomonas cepacia. Due to the hydrophilic (HI) and hydrophobic (HO) microphase separation, the APCNs showed swelling in both water and organic solvents with different optical properties. The method provides an interesting route for making functional biodegradable APCNs using radical chemistry in the future by choosing appropriate vinyl comonomers.

Graphical abstract: Designed enzymatically degradable amphiphilic conetworks by radical ring-opening polymerization

Supplementary files

Article information

Article type
Paper
Submitted
22 Jun 2015
Accepted
22 Jul 2015
First published
24 Jul 2015
This article is Open Access
Creative Commons BY license

Polym. Chem., 2015,6, 6409-6415

Designed enzymatically degradable amphiphilic conetworks by radical ring-opening polymerization

Y. Shi, H. Schmalz and S. Agarwal, Polym. Chem., 2015, 6, 6409 DOI: 10.1039/C5PY00962F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements