Issue 36, 2015

Amphiphilic poly(disulfide) micelles and a remarkable impact of the core hydrophobicity on redox responsive disassembly

Abstract

Redox-responsive amphiphilic triblock copolymers based on poly(triethylene glycol monomethyl ether)methacrylate-b-poly(disulfide)-b-poly(triethylene glycol monomethyl ether)methacrylate (PTEGMA-b-PDS-b-PTEGMA) with different hydrophobicities of the PDS block were synthesized by step-growth followed by chain-growth polymerization. By utilizing thiol–disulfide exchange reaction, polycondensation between di-thiols of varying hydrophobicities and dipyridyl disulfide produced linear telechelic poly(disulfide)s with a controlled degree of polymerization and defined functional groups at the chain-ends, which were subsequently functionalized to produce bifunctional macro-initiators to initiate atom transfer radical polymerization (ATRP) producing ABA-type amphiphilic triblock copolymers. In aqueous medium, both the polymers form micellar aggregates with an average diameter of ∼15 nm. Control experiments indicate a relatively low critical aggregation concentration (CAC) and high dye encapsulation efficiency of the less polar micellar core, reflecting the difference in hydrophobicity depending on the structure of the poly(disulfide) block. To check the impact of such structural changes on micellar disassembly and drug release kinetics, Nile Red (NR) was encapsulated as a hydrophobic probe in the interior of the micelles and glutathione (GSH)-induced disintegration of the backbone and consequently the release of the entrapped guest molecules were monitored. For micellar assembly with a relatively more hydrophobic interior, slower disintegration of the backbone and dye-release kinetics were observed compared to the micelles with less hydrophobic character, owing to slow diffusion of the polar GSH toward the more hydrophobic micellar core.

Graphical abstract: Amphiphilic poly(disulfide) micelles and a remarkable impact of the core hydrophobicity on redox responsive disassembly

Supplementary files

Article information

Article type
Paper
Submitted
23 Jun 2015
Accepted
02 Aug 2015
First published
07 Aug 2015

Polym. Chem., 2015,6, 6465-6474

Amphiphilic poly(disulfide) micelles and a remarkable impact of the core hydrophobicity on redox responsive disassembly

D. Basak, R. Bej and S. Ghosh, Polym. Chem., 2015, 6, 6465 DOI: 10.1039/C5PY00969C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements