Issue 52, 2015

Preparation of magnetic Ag/AgCl/CoFe2O4 composites with high photocatalytic and antibacterial ability

Abstract

Novel plasmonic photocatalysts, Ag/AgCl/CoFe2O4, were prepared via a two-step synthesis method. The obtained Ag/AgCl/CoFe2O4 composites were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible absorption spectroscopy (UV-vis). The magnetic properties of the samples were studied by vibrating sample magnetometer (VSM) analysis. Methyl orange (MO), bisphenol A (BPA) and ciprofloxacin (CIP) were used as target pollutants to investigate the degradation capability of Ag/AgCl/CoFe2O4. Results showed that the composite can degrade both colored and colorless pollutants, while Ag/AgCl/CoFe2O4 (3 : 1) composite showed the highest photoactivity in the degradation of MO. It can degrade about 93.38% MO in 1.5 h. The reactive species scavenger results indicated that hydroxyl radicals (˙OH) were not the main photooxidant, while holes (h+) and superoxide anion radicals (˙O2) played key roles in MO decoloration. Furthermore, the degraded solution of BPA was analyzed using high performance liquid chromatography (HPLC). The results showed that BPA was decomposed gradually. The composite was magnetically separated and investigated using three successive recycle experiments under visible light. The results exhibited that the photoactivity of Ag/AgCl/CoFe2O4 is stable. Besides, Ag/AgCl/CoFe2O4 also exhibited good antibacterial activity against Escherichia coli (E. coli). The method used to prepare the composite can be expanded and applied to synthesize other magnetically separable photocatalysts.

Graphical abstract: Preparation of magnetic Ag/AgCl/CoFe2O4 composites with high photocatalytic and antibacterial ability

Article information

Article type
Paper
Submitted
13 Mar 2015
Accepted
15 Apr 2015
First published
20 Apr 2015

RSC Adv., 2015,5, 41475-41483

Author version available

Preparation of magnetic Ag/AgCl/CoFe2O4 composites with high photocatalytic and antibacterial ability

Y. Xu, T. Zhou, S. Huang, M. Xie, H. Li, H. Xu, J. Xia and H. Li, RSC Adv., 2015, 5, 41475 DOI: 10.1039/C5RA04410C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements