Issue 74, 2015

A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions

Abstract

Organometal halide perovskites have emerged as promising light absorbers for third-generation photovoltaics. Herein we developed a facile spray deposition process to prepare high-quality perovskite films without any post-annealing under ambient conditions with a high humidity of up to 50%. The as-prepared perovskite films exhibit large grain sizes up to micrometers and full surface coverage. These desirable features significantly enhance the light harvesting efficiency and reduce charge recombination. Furthermore, the morphology and film thickness can be easily controlled by varying the precursor concentration or scanning times during spray deposition. The as-fabricated planar heterojunction solar cells with an optimized perovskite film thickness exhibited a power conversion efficiency of ∼7.89%, which is expected to be further improved with the increase of substrate temperature, the utilization of more compatible substrates, and the optimization of the hole-transport layer and device structure. This simple low-temperature manufacturing process provides a novel strategy for the scalable and fast fabrication of high-quality absorber layers for efficient perovskite based solar cells. The film formation mechanism regarding the nucleation and growth of perovskite films with desirable morphology is also discussed.

Graphical abstract: A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions

Supplementary files

Article information

Article type
Paper
Submitted
15 May 2015
Accepted
06 Jul 2015
First published
07 Jul 2015

RSC Adv., 2015,5, 60562-60569

A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions

Z. Liang, S. Zhang, X. Xu, N. Wang, J. Wang, X. Wang, Z. Bi, G. Xu, N. Yuan and J. Ding, RSC Adv., 2015, 5, 60562 DOI: 10.1039/C5RA09110A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements