Issue 102, 2015

Synthesis and characterization of earth-abundant Cu2MnSnS4 thin films using a non-toxic solution-based technique

Abstract

Earth-abundant Cu2MnSnS4 (CMTS) thin films were fabricated through a non-toxic spin-coating technique. The precursor solution is based on a 2-methoxyethanol solvated thiourea complex with acetyl-acetone used as an additive agent, and the spin-coated films were post-annealed at 570 °C under a N2 atmosphere. The influence of annealing time on the structure, composition, morphology, and optical properties of the processed precursor films has been studied in detail. We found that a longer annealing time during CMTS growth can improve the phase purity, promote the preferred orientation along the (112) direction, and enhance grain growth in the micrometer range. Film annealed for 10 min gives a pure CMTS phase, whereas other films annealed for lower and/or higher than 10 min (especially 13 min) can form secondary phases (i.e., SnS, MnS). The band gap energy is estimated as 1.63–1.18 eV for post-annealed films depending on the heat treatment, compared to 1.69 eV for as-prepared film. An efficiency of 0.49% for the device fabricated here has been achieved with an open-circuit voltage of 308.4 mV, a short-circuit current density of 4.7 mA cm−2, and a fill factor of 33.9%. It offers a new research direction for the application of a CMTS absorber layer in low-cost solar cells.

Graphical abstract: Synthesis and characterization of earth-abundant Cu2MnSnS4 thin films using a non-toxic solution-based technique

Article information

Article type
Paper
Submitted
23 Jul 2015
Accepted
28 Sep 2015
First published
28 Sep 2015

RSC Adv., 2015,5, 84295-84302

Author version available

Synthesis and characterization of earth-abundant Cu2MnSnS4 thin films using a non-toxic solution-based technique

L. Chen, H. Deng, J. Tao, H. Cao, L. Huang, L. Sun, P. Yang and J. Chu, RSC Adv., 2015, 5, 84295 DOI: 10.1039/C5RA14595C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements